

The interference of flexible working times with the usability of free time – a predictor of social impairment ?

Anna Wirtz, Ole Giebel, Carsten Schomann, Friedhelm Nachreiner

GAWO Gesellschaft für Arbeits-, Wirtschafts- und Organisationspsychologische Forschung e.V.

Carl von Ossietzky Universität Oldenburg,

> Background:

- biological & social rhythms are rather fixed
- Working times (WT) can be
 - regular / irregular,
 - in / out of phase

with biological rhythms (e.g. shift work)

 very irregular WTs are connected to increased impairments of health & social well-being (Costa et al., 2003)

> Research Questions:

- Is it possible to measure rhythms inherent in flexible WTs and their interference with social / biological rhythms?
- Are interferences of WTs with social / biological rhythms associated with health and social impairments?
 - Can the amount of impairment be predicted from indicators of the interference?

Secondary analyses, using data from 2 surveys

- survey 1 on flexible working times
 - reported working hours over 4 weeks,
 - (= first time series; working time = 1, time off-work = 0
 - \rightarrow rectangular signal)
 - questions on social and health impairments
 - dependent variables
- survey 2 on the usability of free time
 - data indicating the social rhythm
 - (= second time series)

Regular working hours as time series (on/off), one week

Index of social rhythm, operationalized through the usability of free time

Interference between working hours and the usability of free time?

Both time series (working hours and usability) combined

Fourier Analysis: describing a (here: rectangular) signal as an infinite series of sinus curves

Addition of sinus curves to represent a rectangular signal

Method – spectrum analysis

- detection of the phase shift
 (φ) between two signals
- calculated for daily (24h) and weekly (168h) rhythms of working time and the index of the social rhythm
- > Notation:
 - φ24: phase shift between daily rhythms in WT and usability of time
 - φ168: phase shift between weekly rhythms in WT and usability of time

Correlation coefficients -

correlation between spectral indicators and selected social impairments

Social impairments	Spectral power 168 h	Spectral power 24 h	φ 24 h	φ 168 h
Influence of working schedule on free time	403 (**)	388 (**)	313 (**)	487 (**)
Hobby suffers from working schedule	379 (**)	190 (*)	136	262 (**)
Partner suffers from working schedule	358 (**)	386 (**)	317 (**)	408 (**)
Arguments with partner because of working schedule	259 (*)	320 (**)	429 (**)	334 (**)

(**) p<0.01 / (*) p<0.05

covariation between phase shift of the daily & weekly rhythms in working time with social rhythms and reported social impairments

- Iow phase shift relates to high social impairments (maximum in curve fit at φ=0 hrs)
- Iow phase shift = high interference between working time and social rhythms

Factor "social impairments"

Social impairments [factor score] in relation to φ 24 Curve fit linear: r² = .06 / quadratic: r² = .11 p < .01 (both curve fits)

Results

Amount of social impairment in relation to daily phase shift [lack of time for hobbies]

- splitting the sample into 4 categories of phase shift φ24:
 - group 1: ϕ 24 = 0 3 hrs
 - group 2: $\phi 24 = 3 6$ hrs
 - group 3: $\phi 24 = 6 9$ hrs
 - group 4: ϕ 24 = 9 18 hrs
- In groups with lower φ24, reported impairments are significantly higher than in groups with higher phase shift

- Impairments are not only a function of single characteristics, but also of their interactions
- multiple regression analysis: social impairments (factor score) depend on
 - power of 168h (weekly) rhythm of WT ($\beta = -0.278$)
 - interaction "daily rhythm of WT" x "phase shift of daily rhythms of WT with usability" $(\beta = -0.247)$

 $(p < .05, R^2 = .21)$

Relation of the interaction of spectral power P24 and phase shift φ24 to social impairments [factor score]

- Approach of using spectrum analysis seems promising
 - for measuring rhythmic components inherent in working hours
 - for examining the interference of working times with social rhythms
- Results should be validated with other kinds of irregular working hours, e.g. flexible shift work
- Further and more spectral indicators should be used to describe working hours in more detail
- Objective data on working times, the use of free time and also sleeping behaviour may be useful for further validation

Thank you for your attention!

Contact details for further information

Anna Wirtz Carl von Ossietzky Universität Oldenburg Institut für Psychologie, Abt. Arbeits- und Organisationspsychologie or GAWO e.V anna_wirtz@web.de